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Abstract
A classical problem of free-space Green’s function G0� representations of the
Helmholtz equation is studied in various quasi-periodic cases, i.e., when an
underlying periodicity is imposed in less dimensions than is the dimension of
an embedding space. Exponentially convergent series for the free-space quasi-
periodic G0� and for the expansion coefficients DL of G0� in the basis of regular
(cylindrical in two dimensions and spherical in three dimension (3D)) waves,
or lattice sums, are reviewed and new results for the case of a one-dimensional
(1D) periodicity in 3D are derived. From a mathematical point of view, a
derivation of exponentially convergent representations for Schlömilch series of
cylindrical and spherical Hankel functions of any integer order is accomplished.
Exponentially convergent series for G0� and lattice sums DL hold for any value
of the Bloch momentum and allow G0� to be efficiently evaluated also in the
periodicity plane. The quasi-periodic Green’s functions of the Laplace equation
are obtained from the corresponding representations of G0� of the Helmholtz
equation by taking the limit of the wave vector magnitude going to zero. The
derivation of relevant results in the case of a 1D periodicity in 3D highlights
the common part which is universally applicable to any of remaining quasi-
periodic cases. The results obtained can be useful for the numerical solution
of boundary integral equations for potential flows in fluid mechanics, remote
sensing of periodic surfaces, periodic gratings, and infinite arrays of resonators
coupled to a waveguide, in many contexts of simulating systems of charged
particles, in molecular dynamics, for the description of quasi-periodic arrays
of point interactions in quantum mechanics, and in various ab initio first-
principle multiple-scattering theories for the analysis of diffraction of classical
and quantum waves.
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1. Introduction

Let � be a d�-dimensional simple (Bravais) periodic lattice embedded in a space of dimension
d � d� (the condition of a simple lattice can easily be relaxed to an arbitrary periodic lattice
by following recipes of [1–5]). Let H+

l stand for the cylindrical
(
H

(1)
l

)
and spherical

(
h

(1)
l

)
Hankel functions in d = 2 and d = 3, respectively, YL be corresponding angular momentum
harmonics (cylindrical in d = 2 and spherical in d = 3, see also appendix B for properties of
YL), and r and r′ be spatial points. The paper is concerned with an efficient calculation of the
series ∑

rn∈�

H+
l (σ |r − r′ + rn|)Y∗

L(r̂n) eik·rn , (1)

where the origin of coordinates is in the lattice, k is called the Bloch momentum, σ = 2π/λ

denotes a wave vector magnitude (σ is not necessarily equal to |k|), λ is a wavelength, L is,
in general, a multi-index of angular momentum numbers (e.g., L = (lm) in three dimensions
with l � 0 and −l � m � l), ∗ stands for a complex conjugate, and r̂n denotes a unit vector
which points in the direction of rn.

In mathematical literature such series are known as Schlömilch series [6–8]. As first
noted by Emersleben [9], in three dimensions (3D) in the special case of r − r′ = 0 and
l = σ = 0 the series reduce to Epstein zeta functions [10–12]. A physical motivation to
investigate such series derives from a fact that, for l = 0, the series (1) are prerequisite
to determine a corresponding free-space (quasi-) periodic Green’s function G0� of a scalar
Helmholtz equation (see below). For l �= 0 and r − r′ = 0, with singular term being excluded,
the series (1) then formally determine the lattice sums DL, which are defined as the expansion
coefficients G0� in the basis of cylindrical and spherical Bessel functions in 2D and 3D,
respectively (see equations (8), (11)).

However, analytic closed expressions for such series are only known for l = 0 in two
particular cases in 3D: (i) in the case of a one-dimensional (1D) periodicity [13–15] and,
when additionally σ = 0 (the Laplace limit), (ii) for a two-dimensional (2D) periodicity [14].
Otherwise the summation in (1) has to be performed numerically. However, since

H+
l (z) ∼ chz

−(d−1)/2

(
2

π

)(d−1)/2

exp{i[z − (d − 1)π/4 − lπ/2]} (2)

as z → ∞ and −π < arg z < 2π , where ch = 1 unless d = 2, in which case ch = √
2/π (see

equations (9.2.3) and (10.1.1) of [16]), the series (1) is not absolutely convergent. Even if one
assumes that σ has an infinitesimally small positive imaginary part, and thereby establishing
absolute convergence, the convergence of the series in equation (1) is notoriously slow, thereby
rendering it useless for practical applications.

The study of efficient techniques for the calculation of G0� and lattice sums DL has a long
history [1, 2, 4, 8, 17–24] and the topic has roots and branches in different areas of chemistry,
physics and mathematics. Despite that it still continues to be a perennial research subject
[5, 25–37]. However, quite often this happens merely because researches in widely differing
areas of chemistry, physics and mathematics are not aware of the techniques and results
developed in connection with the so-called Korringa–Kohn–Rostoker (KKR) [1, 2, 23, 24] and
layer Korringa–Kohn–Rostoker (LKKR) theories either for quantum (electron) waves within
low-energy electron diffraction (LEED) theory [4, 20–22] or for various classical (acoustic,
elastic, electromagnetic, water) waves [5, 26, 27]. Therein exponentially convergent series for
G0� and lattice sums DL have been derived for a number of cases. In a periodic case (d� = d),
efficient computational schemes for G0� and lattice sums DL have been provided more than
30 years ago [2, 23]. The quasi-periodic case d� = 2 and d = 3 has been investigated in
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detail in a series of articles by Kambe almost 40 years ago [4, 20, 21]. The case d� = 1 and
d = 2 has been dealt with only relatively recently in [5, 26]. Surprisingly enough, the case
d� = 1 and d = 3 has not been studied in full detail yet, although it may provide an efficient
description of ‘wave-integrated circuits’.

Therefore, in the following we shall focus on the so-called quasi-periodic, or layer, case,
when the underlying lattice � is of lower dimensionality than the embedding space (d� < d)

and, in particular, on the d� = 1, d = 3 case. There are many physical problem which
would profit from an efficient computational scheme for G0� and lattice sums DL in the case
of 1D periodicity in 3D. For instance, a Green’s function representing a point source and
satisfying the respective von Neumann and Dirichlet boundary condition on a flow channel
walls in fluid mechanics for the flow between parallel planes can be written as a sum and
difference of G0� corresponding to 1D periodicity in 3D taken at two different spatial points
[30]. (For the flow in a rectangular channel, the relevant G0� would then correspond to 2D
periodicity in 3D [30].) Another problem involves infinite arrays of resonators coupled to a
waveguide which by itself may have a plethora of photonics applications [38]. Moreover, recent
progress in nanotechnology made it possible to fabricate 1D chains of metal nanoparticles
[39, 40] and dielectric microparticles [41]. Additionally, understanding of linear periodic
arrays of lossless spheres is germane for the qualitative description of finite-length periodic
arrays of small antennas [42]. In a linear chain of spherical metal nanoparticles light can be
transmitted by electrodynamic interparticle coupling resulting in a subwavelength-sized light
guide [39, 40, 43–45]. So far, infinite 1D linear chains of particles have only been investigated
within the one-particle theory framework of Schrödinger equation for the description of
polymers [15], in the electrostatic limit within the framework of the Laplace equation [44], or
in the dipole approximation [42, 45, 46]. Moreover, the energy operator in the one-particle
theory of periodic point (zero-range) interactions is constructed in terms of an auxiliary
operator which corresponds essentially to the operator of multiplication by D00 (γ function of
Karpeshina [13, 47]).

In the following, exponentially convergent series for the free-space quasi-periodic G0�

and for the lattice sums DL are reviewed and new results for the case of a 1D periodicity in
3D are derived (see equations (83), (102) and (118)). The derivation of relevant results for
the case of a 1D periodicity in 3D is performed in such a way that the common part which is
universally applicable to any of the remaining quasi-periodic cases is highlighted. Thereby, a
link with earlier results by Kambe [4, 20] for a 2D periodicity in 3D can easily be established
and the proof of results for a 1D periodicity in 2D announced in [26] can easily be carried
out.

1.1. The outline of the paper

The paper is organized as follows. Section 2 introduces notation, provides some necessary
definitions and gives an overview of some of the problems requiring the knowledge G0� and
lattice sums. In section 3, G0� is expressed as an exponentially convergent sum over a dual
lattice �∗. Such a dual representation of G0� is then a starting point in the derivation of a
corresponding exponentially convergent Ewald representation of G0� in section 4. As in the
bulk case, a derivation of the Ewald representation invokes a suitable integral representation
of Hankel functions and a Jacobi identity (see appendix D). In addition, following Kambe
[21], an analytic continuation procedure is employed, which is analogous to finding the values
of the Riemann ζ -function outside the domain of absolute convergence of a defining series
(see [48], p 273). The Ewald representation of G0�, which is a hybrid sum over both � and
dual lattice �∗, converges uniformly and absolutely over bounded sets of R. Unlike the dual
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representation, the Ewald representation can also be efficiently evaluated in the periodicity
plane (provided that it remains R �∈ �).

Exponentially convergent series for the lattice sums DL in the case of a 1D periodicity
in 3D are derived in section 5. Equations (83), (102), (118) are the main new results of this
paper.

In section 6, the quasi-periodic Green’s function of the Laplace equation are obtained from
that of the Helmholtz equation by taking the limit σ → 0. We then end up with discussion
(section 7) and summary and conclusions (section 8).

To make this paper as readable as possible, several technical arguments have been relegated
to a number of appendices. Appendix A summarizes relevant integral representations of H+

l

and appendix B lists relevant properties of harmonics YL. Some useful properties of free-space
scattering Green’s function are collected in appendix C, whereas appendix D shows several
forms of Jacobi identities. Some of the general properties of free-space quasi-periodic Green’s
functions and the lattice sums are outlined in appendix E. Alternative definitions of lattice
sums and structure constants are then summarized in appendix F.

2. Notation and definitions: G0Λ and lattice sums

2.1. G0�

A corresponding free-space (quasi-) periodic Green’s function G0� of a scalar Helmholtz
equation is defined by an image-like series

G0�(σ, k, R) =
∑
rn∈�

G+
0(σ, R + rn) e−ik·rn =

∑
rn∈�

G+
0(σ, R − rn) eik·rn , (3)

where the origin of coordinates is in the lattice. Here, G+
0 is the free-space scattering, or

retarded, Green’s function of a scalar Helmholtz equation in d dimensions,

[� + σ 2]G0(σ, r, r′) = δ(r − r′), (4)

with � being a corresponding Laplace operator, which is represented for large R = |R| =
|r − r′| by outgoing waves (i.e., satisfies Sommerfeld radiation condition). Since G+

0 is only
a function of R = r − r′, the functional dependence of G+

0 has been written as G+
0(σ, R) in

equation (3). Indeed, G+
0 is proportional to an appropriate Hankel function of zero order [16]:

G+
0(σ, R) = lim

ε→0+

1

(2π)d

∫
eik·R

σ 2 − k2 + iε
dk = −i

π

2

A

(2π)d
σ d−2H+

0(σR) (5)

(see also appendix C). Here, k = |k| and A is the surface of a unit sphere in d dimensions
(see equation (B.8)). (With H0(z) = eiz as a one-dimensional (1D) analogue of the Hankel
function [49] equation (5) also becomes valid for d = 1, in which case A = 2 (unit ‘sphere’
in 1D consists of two points).) Consequently, upon substituting (5) into (3) one arrives, up to
a proportionality factor, to the special case of series (1) for l = 0.

A scalar Helmholtz equation is employed for the description of various waves arising
in acoustics, mechanics, fluid dynamics, electromagnetism and quantum mechanics [50].
An important class of problems which requires an efficient calculation of G0� arises in
connection with remote sensing of periodic surfaces [25], numerical solution of boundary
integral equations for potential flows in fluid mechanics [28–31], periodic gratings, and infinite
arrays of resonators coupled to a waveguide [38], in descriptions of dipolar fields in simulated
liquid–vapour interfaces [51], in many contexts of simulating systems of charged particles,
such as crystal binding and lattice vibrations [9, 11], Madelung constant [11, 12], in various
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problems in molecular dynamics and Monte Carlo simulations of particles interacting by long-
range Coulomb forces [32, 52], wherein periodic boundary conditions are usually imposed in
order to avoid the boundary effects.

2.2. Lattice sums

Within a primitive cell of �, the respective Green’s functions G+
0 and G0� only differ up to

boundary conditions and their respective singular parts are identical. For the scalar Helmholtz
equation, the singular, or principal-value, part of G+

0 is

G
p

0 (σ, R) = Re G+
0(σ, R) =

{
N0(σR)/4, 2D

−cos(σR)/(4πR), 3D
(6)

where N0 is the cylindrical Neumann function [16]. Therefore, the difference

D�(σ, k, R) = G0�(σ, k, R) − G
p

0 (σ, R) (7)

is regular for R → 0 and can be expanded in terms of regular (cylindrical in 2D, spherical in
3D) waves [2, 4, 20, 23, 26, 27, 53]:

D�(σ, k, R) =
∑
L

DL(σ, k)Jl (σR)YL(R̂). (8)

Here, the symbol Jl stands for cylindrical and spherical Bessel functions in 2D and 3D,
respectively. The expansion coefficients DL(σ, k) introduced by equation (8) are the sought
lattice sums. The choice of what to subtract in equation (7) is somewhat arbitrary and other
choices will lead to slight amended expressions for the lattice sums DL (see also appendix F).
The present choice goes back to Kohn and Rostoker [53] and has been adopted by Ham and
Segall [2], Kambe [4, 20], Pendry [22] and others [26, 27].

The series (1) for l �= 0 and R ≡ 0 then formally determine the lattice sums DL. Indeed,
the free-space Green’s function is known to possess a partial wave expansion,

G+
0(σ, r, r′) = −iAC

∑
L

Jl (σ r<)H+
l (σ r>)YL(r̂<)Y∗

L(r̂>), (9)

where r> (r<) is the larger (smaller) of the |r| and |r′|. The numerical constant C (see
equation (10) or equation (C.2)) is basically the prefactor in equation (5). Note that

AC = π

2

A2

(2π)d
σ d−2 =




1
σ
, 1D

π
2 , 2D

σ, 3D.

(10)

When the partial wave expansion is substituted for G+
0 in the series (3) for G0�, then, according

to equations (7), (8), one has

DL(σ, k) = −iCA1/2δL0 − iAC
∑
rn∈�

′H+
l (σ rn)Y∗

L(r̂n) eik·rn , (11)

where a prime on summation sign will here and hereafter indicate that the term rn = 0 is
omitted from the sum. Thus as it has been alluded to above, the series (11) is, up to a constant
term and a proportionality factor, the special case of series (1) for l �= 0 and R = 0.

It is worthwhile to point out that one is often rather interested in the lattice sums DL

than at G0� itself. For instance, since DL’s do not depend on R,G0� can be evaluated using
equations (7) and (8) at any observation point with the same set of the lattice sums. This
can in turn significantly speed up numerical solutions of various boundary-value problems.
Knowledge of the lattice sums DL is a key to efficient numerical analysis of various ab
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initio first-principle multiple-scattering problems, such as band structure calculation within
Korringa–Kohn–Rostoker (KKR) theories [1, 2, 23, 53–64], and diffraction problems by
periodic structures, or gratings, using the so-called layer KKR (LKKR) theories or equivalents
thereof, either for quantum (electron) waves within low-energy electron diffraction (LEED)
theory [4, 20, 22, 65, 66] or for various classical (acoustic, elastic, electromagnetic, water)
waves [5, 26, 64, 67–73]. Lattice sums also arise in quantizing classically ergodic systems
such as Sinai’s billiard [24] and its various electromagnetic analogues [24, 74]. Moreover,
the spectrum within the one-particle theory of periodic point (zero-range) interactions is
determined as the set of those z which, for a given k‖ and α, satisfy an implicit equation [13, 47]

D00(i
√−z, k‖) = α̃. (12)

The spectral parameter α̃ here is a boundary-condition parameter which determines the
asymptotic of eigenfunctions at the lattice points and is the same for all the eigenfunctions
[13, 47, 75].

3. Dual representations of quasi-periodic G0Λ

Let �∗ be a corresponding dual (momentum) lattice, i.e., for any rn ∈ � and ks ∈ �∗ one
has rn · ks = 2πN , where N is an integer. It is well known that G0� has an alternative
representation as a sum over the dual lattice �∗. For example, in the bulk case, i.e., when
d� = d, the dual sum representation of G0� is

G0�(σ, k, R) = 1

v0

∑
ks∈�∗

ei(k+ks )·R

σ 2 − (k + ks)2
=

∑
ks∈�∗

ψ(k + ks , r)ψ∗(k + ks , r′)
σ 2 − (k + ks)2

, (13)

with eigenfunctions

ψ(k + ks , r) = 1√
v0

ei(k+ks )·r (14)

normalized to unity in the fundamental (Wigner–Seitz) domain,∫
WS

ψ∗(k + ks , r)ψ(k + ks ′ , r) dr = δss ′ , (15)

with v0 being the volume of a unit cell of �. A dual representation is sometime called an
eigenfunction expansion of G0�. Often the respective representations (3) and (13) of G0� are
also called the spatial-domain and spectral-domain forms, respectively [28, 29, 31, 33, 35].

In the following, the dual sum representation of G0� in the quasi-periodic case of
1D periodicity in 3D will be derived and its convergence properties will be discussed.
However, before proceeding any further, it turns out expedient to provide some supplementary
geometrical definitions which are up to minor variations adopted, for instance, within LEED
and LKKR theories [4, 20, 22, 26, 27, 65–69, 71–73].

3.1. Supplementary geometrical definitions

In the quasi-periodic case, we define the respective parallel and perpendicular components r‖
and r⊥ of a given vector r = r‖ + r⊥ with respect to the d�-dimensional plane containing the
Bravais lattice � (i.e., line for d� = 1 and surface for d� = 2) and its normal n, respectively.
Then for any rn ∈ �,

r · rn = r‖ · rn, r⊥ · rn ≡ 0. (16)

The respective projections k‖ and k⊥ of wave vector k = k‖ + k⊥ are then defined
in like manner with respect to �∗. Obviously, in a quasi-periodic case the quantities
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θ

k

n

Λ

k

k

Figure 1. Geometry and parameters—a plane wave with wave vector k incident on � with an
incidence angle θ .

G0�(σ, k, R),D�(σ, k, R) and DL(σ, k) entering equations (3), (7), (8), (11) are only
functions of k‖. Therefore, in the quasi-periodic case, i.e., if the underlying lattice � is
of lower dimensionality than the embedding space (d� < d), it is more appropriate to call
merely the projection k‖ as the Bloch momentum.

A plane wave eik·r incident on a scattering plane of identical scatterers arranged regularly
on � would (see figure 1), in general, be diffracted (transmitted) to a wave with a wave vector
K−

n

(
K+

n

)
, where K±

n = (
k‖ + kn,K

±
⊥n

)
,

K±
⊥n = ±K⊥n =

{
±[σ 2 − |k‖ + kn|2]1/2, σ 2 � |k‖ + kn|2,
±i[|k‖ + kn|2 − σ 2]1/2, σ 2 < |k‖ + kn|2,

(17)

where kn ∈ �∗ and |k| = ∣∣K±
n

∣∣ = σ . Here K⊥n is indicated as a scalar, which is definitely
true for d − d� = 1. In the case of a 1D periodic chain in 3D (d − d� = 2), K⊥n will be taken
as the projection of K⊥n on the plane spanned by the wave vectors of incident and diffracted
beams. In the above definition, the projection K‖n = k‖ + kn is real but the normal projection
K⊥n can be either real or imaginary. In the case of real K⊥n, we speak of a propagating wave,
and in the case of imaginary K⊥n of an evanescent wave.

In the present case the scatterers are absent. Nevertheless, it turns out expedient to define
wave vectors K±

n and the respective projections K‖n and K±
⊥n even in the free-space case.

3.2. Resulting series

In order to establish a dual representation of a quasi-periodic G0� for d − d� = 2, i.e. a 1D
periodicity along the x-axis in 3D, one first substitutes the integral representation (5) of G+

0
into defining equation (3) of a free-space quasi-periodic Green’s function G0�. Then, the
Poisson formula∑

rn∈�

ei(q‖−k‖)·r‖n = (2π)d�

v0

∑
kn∈�∗

δ(q‖ − k‖ − kn) (18)
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is applied resulting in

G0�(σ, k‖, R) = (2π)d�−d

v0

∑
kn∈�∗

∫
eiq⊥·R⊥+i(k‖+kn)·R‖

σ 2 − q2
⊥ − |k‖ + kn|2 + iε

dq⊥. (19)

Now the 2D plane-wave expansion (B.7) is applied to eiq⊥·R⊥ . Using the orthonormality of
cylindrical harmonics Yl = eilφ/

√
2π , one finds (equation (B.6))∫ 2π

0
Yl(φ) dφ =

√
2πδl0. (20)

Therefore, integration in the integral representation (19) of G0� over q⊥ results in

G0�(σ, k‖, R) = (2π)d�−d+1

v0

∑
kn∈�∗

ei(k‖+kn)·R‖
∫ ∞

0

q⊥J0(q⊥|R⊥|)
σ 2 − q2

⊥ − |k‖ + kn|2 + iε
dq⊥

= − i

4v0

∑
kn∈�∗

ei(k‖+kn)·R‖H0(K⊥n|R⊥|). (21)

Here in going from the first to second equality the integral identity (C.3) for 2D case has
been applied. Thereby, the sum over rn ∈ � has been transformed into a sum over kn ∈ �∗

resulting in the so-called dual representation (spectral-domain form) of G0�.

3.2.1. Complementary cases. For completeness, in the case of codimension 1 (d − d� = 1),
one first performs a partial integral over R⊥ in the integral representation (5) of free-space
Green’s function. This amounts to picking up a residue of a contour integral in the complex
plane according to Cauchy theorem resulting in

G+
0(σ, R) = − π i

(2π)d

∫
eiq‖·R‖+i

√
σ 2−q2

‖|R⊥|√
σ 2 − q2

‖
dq‖. (22)

Substituting the integral representation of G+
0(σ, R) into defining equation (3) of a free-space

quasi-periodic Green’s function G0� then results in

G0�(σ, k‖, R) = − π i

(2π)d

∫
eiq‖·R‖+i

√
σ 2−q2

‖|R⊥|√
σ 2 − q2

‖

[∑
rn∈�

ei(q‖−k‖)·r‖n

]
dq‖

= − i

2v0

∑
kn∈�∗

ei(k‖+kn)·R‖+iK⊥n|R⊥|

K⊥n

= |R⊥|
2v0

∑
kn∈�∗

ei(k‖+kn)·R‖h
(1)
0 (K⊥n|R⊥|), (23)

where K⊥n is given by equation (17). Here in going from the first to second equality the Poisson
formula (18) has been applied. Note in passing that the respective dual representations for
a 1D periodicity in 2D and 2D periodicity in 3D are formally identical, the only difference
being the dimensionality of �∗ in (23).

Since exponentials in the second equality in (23) can be rewritten as a product of
two ‘eigenfunctions’, the dual representation can be recast in the form of an eigenfunction
expansion of G0� (cf Equation (13)). On the other hand, since H0(K⊥n|R⊥|) in equation (21)
cannot be factored out as a product of two ‘eigenfunctions’, an eigenfunction interpretation of
a dual representation is obscured for the case of a 1D periodicity in 3D.
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3.3. Convergence and limiting cases

Note that, according to equation (17), K⊥n is purely imaginary with positive imaginary
part for |k‖ + kn| > σ . For purely imaginary argument z = ix with x > 0 the Hankel
functions H

(1)
0 (ix) are related to modified Bessel functions K0(x) (equation (9.6.4) of [16]),

whereas h
(1)
0 (ix) in the series for d − d� = 2 are related to modified Bessel functions of

third kind
√

π/(2x)K1/2(x) (equation (10.2.15) of [16]). This results in rapidly decaying
terms and exponential convergence (see equations (9.7.2) and (10.2.17) of [16]). Exponential
convergence can also be directly inferred from the explicit expression for

h
(1)
0 (z) = eiz

iz
. (24)

One then easily finds that the respective terms in series (23) become exponentially decreasing
with increasing |k‖ + kn| for R⊥ �= 0. Since H

(1)
0 (z) ∼ √

2/(πz) ei(z−π/4) for |z| → ∞ and
−π < arg z < 2π (see equation (9.2.3) of [16], see also equation (2)), the same applies
to the series (21). Therefore, although the convergence of a dual representation of Green’s
function is initially (for |k‖ + kn| � σ ) slow as the series consists of mere oscillating terms,
afterward (for |k‖ + kn| > σ ) convergence becomes exponential for R⊥ �= 0 (assuming as
usual K⊥n �= 0).

Note in passing that all the dual representations of the reduced sums are nonanalytic in
R⊥ as they are functions of |R⊥|. In the case of series (23), one has

|R⊥|h(1)
0 (K⊥n|R⊥|) → −i/K⊥n as |R⊥| → 0. (25)

Therefore, absolute convergence of the resulting series in the limiting case cannot be
established even for a 1D periodicity in 2D ([48], pp 51–2). Even worse, in the case of
a 1D periodicity in 3D individual terms of the series (21) possess a logarithmic singularity
(see equations (9.1.3), (9.1.13) of [16]).

To this end, it has been demonstrated that absolute convergence of dual representations
can only be established under the assumption of R⊥ �= 0. Additionally, obtaining the quasi-
periodic Green’s function of the Laplace equation from that of the Helmholtz equation by
taking the limit σ → 0 in the resulting expressions (see section 6) is problematic when
starting from a dual representation. Since

H+
0(K⊥n|R⊥|) → H+

0(i|k‖ + kn||R⊥|) as σ → 0, (26)

absolute convergence can again be established only for R⊥ �= 0. In order to resolve the
above problems it turns out expedient to invoke representations which converge uniformly and
absolutely with respect to R. Such representations are known as the Ewald representations
[18, 19]. Additional bonus of the Ewald representations is that they enable one to investigate
analytic properties of quasi-periodic Green’s functions in the complex variable z = σ 2.

As a final remark of this section note that dual representations in the quasi-periodic case
can also be established by applying an Ewald integral representation of Green’s function and
the generalized Jacobi identity. This path, which has been originally followed by McRae
[76] for a 2D periodicity in 3D, is outlined in the online supplementary material available at
stacks.iop.org/JPhysA/39/11247.

4. Ewald representations of quasi-periodic G0Λ

In going from the spatial-domain form (equation (3)) to the respective spectral-domain forms
of G0� (equations (21), (23)), the summation over � has been fully replaced by a summation
over �∗. In this section, starting from the spectral-domain forms of G0� a half-step backward

http://stacks.iop.org/JPhysA/39/11247
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will be performed resulting in a hybrid Ewald representation of G0�. The Ewald representation
of G0� involves sums over both � and �∗ and, in contrast to a dual, spectral domain, form of
G0�, is valid for all R⊥ and uniformly convergent with respect to bounded sets of R, provided
that R �∈ �.

In deriving the Ewald representation of G0�, we first recall formulae (10.1.1) and (9.1.6)
of [16] and recast h

(1)
0 in the series (23) as

h
(1)
0 (z) =

(
π

2z

)1/2

H
(1)
1/2(z) = −i

(
π

2z

)1/2

H
(1)
−1/2(z). (27)

Therefore, a dual representation of G0� in any quasi-periodic case (equations (21), (23)) can
be rewritten as a sum of cylindrical Hankel functions of an appropriate order.

Now for d − d� = 2, we shall introduce

Gν�(σ, k, R) = − i

4v0

∑
kn∈�∗

( |R⊥|
K⊥n

)ν/2

H
(1)
−ν/2(K⊥n|R⊥|) ei(k‖+kn)·R‖ . (28)

In the following, Gν� will be called an analytic form of G0�. Obviously G0� = Gν�|ν=0.
Next it turns out expedient to employ the following integral representation (see equation (A.6)
of appendix A):( |R⊥|

K⊥n

)ν/2

H
(1)
−ν/2(K⊥n|R⊥|) = 1

π i

∫ ∞ exp iφn

0+

ζ ν/2−1 e
1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ. (29)

The lower limit 0+ indicates that the contour integral starts from 0 in the direction of the
positive real axis. Here, we have used the convention (see [48], p 589) that( |R⊥|

K⊥n

)ν/2

= exp

{
ν

2

(
ln

∣∣∣∣ R⊥
K⊥n

∣∣∣∣ − i arg K⊥n

)}
, (30)

where the argument of K⊥n takes the values 0 or π/2, and φn is given by

φn = π − 2 arg K⊥n. (31)

From equation (29) it follows that H
(1)
0 (K⊥n|R⊥|), and hence also G0�, can be

analytically continued in the complex parameter ν. This explains the reason why Gν� defined
by equation (28) has been called an analytic form of G0�. Indeed, as soon as Re ν > 0,

H
(1)
−ν/2(z) ∼ −i

eνπ i/2

π
�(ν/2)(z/2)−ν/2 as z → 0 (32)

(equations (9.1.6) and (9.1.9) of [16]). Therefore, all the terms in the series (28) for Re ν > 0
are singularity free as |R⊥| → 0, and the original logarithmic singularity of H

(1)
0 (K⊥n|R⊥|)

in the limit |R⊥| → 0 in the dual representation (21) of G0� is thereby avoided. Additionally,
the series in (28) can be easily seen as an analytic function of ν for all values of R, provided
that Re ν > 2d�. In the latter case, upon using asymptotic (32), the elementary products
|R⊥|ν/2H

(1)
−ν/2(K⊥n|R⊥|) in the series (28) can be uniformly bounded for all n by a finite

number as |R⊥| → 0. On the other hand, the asymptotics of H
(1)
−ν/2(z) = eνπ i/2H

(1)
ν/2(z)

(equation (9.1.6) of [16]) as K⊥n → ∞ is determined according to equation (2) with d = 2.
Consequently, the series (28) can be uniformly bounded by the series K

−ν/2
⊥n for all R. Now

the series K
−ν/2
⊥n is absolutely convergent for Re ν > 2d� ([48], pp 51–2). Therefore, since the

sum in equation (28) is absolutely and uniformly convergent for all R, it defines an analytic
function of ν for all values of R⊥ and R‖ if Re ν > 2d� ([48], section 5.32).

Now, the task is to find an analytic continuation Gν� from a domain Re ν > 2d� to a
domain containing ν = 0. Here, it has been implicitly assumed (and will be proved later on)
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that the analytical of Gν� defined for Re ν > 2d� by the series (28) will yield our G0� defined
by equation (3). The necessity of an analytic continuation in the quasi-periodic case makes
derivation of the Ewald representation of G0� fundamentally different from that in the bulk
case. This analytical continuation procedure is analogous to finding the values of the Riemann
ζ -function outside the domain of absolute convergence, Re ν � 1, of its defining series:

ζ(ν) =
∞∑

n=1

n−ν . (33)

In order to find out an analytic continuation Gν� in a domain containing ν = 0, one substitutes
(29) back into (28) which results in

Gν�(σ, k‖, R) = − 1

4πv0

K2
⊥n>0∑

kn∈�∗
ei(k‖+kn)·R‖

∫ −∞

0+

ζ ν/2−1 e
1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ

− 1

4πv0

K2
⊥n<0∑

kn∈�∗
ei(k‖+kn)·R‖

∫ +∞

0+

ζ ν/2−1 e
1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ. (34)

The first sum has only a limited number of terms so that the order of integration and summation
can be inverted. By a straightforward generalization of Riemann’s method (see [48], p 273),
the inversion of integration and summation also holds for the second sum in (34), provided
that Re ν > 2d� and if always Re ζ > 0 on the contour of integration [21].

The remaining two steps in the derivation of the Ewald representation are essentially those
used by Epstein in an analytic continuation of his zeta functions [10, 11]:

• the resulting contour integral is split into two parts by taking a point η somewhere in the
domain Re η > 0, |η| < ∞;

• the generalized Jacobi identity (D.4), which is valid for Re ζ > 0, is applied for the part
of the integral from 0 to η with ζ = 1/(2ξ 2), and rs = −rs , yielding∑
kn∈�∗

e−(kn+k‖)2ζ/2+i(k‖+kn)·R‖ = v0

(2πζ)d�/2

∑
rn∈�

e−(R‖+rn)
2/(2ζ )−ik‖·rn . (35)

Following the first step, Gν� is expressed as the sum of two terms,

Gν�(σ, k‖, R) = G1(σ, k‖, R) + G2(σ, k‖, R), (36)

where the respective G1 and G2 contributions result from the respective contour integrals over
(0, η) and (η,∞). Obviously, although each of the partial integrals depends on η, called the
Ewald parameter, their sum does not.

Following the second step, equation (34) is transformed into

Gν�(R) = − 1

4πv0

∫ −∞

η

K2
⊥n>0∑

kn∈�∗
ei(k‖+kn)·R‖ζ ν/2−1 e

1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ

− 1

4πv0

∫ +∞

η

K2
⊥n<0∑

kn∈�∗
ei(k‖+kn)·R‖ζ ν/2−1 e

1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ

− 1

(2π)3/2

(π

2

)1/2
∫ η

0

∑
rn∈�

e−ik‖·rnζ ν/2−3/2 e
1
2 [σ 2ζ−(R+rn)

2/ζ ] dζ. (37)

The latter expression is an analytic function of ν for all values of ν if |R| �= 0, or more
generally if R �∈ �, and it represents the sought analytic continuation of (28) for Re ν � 2d�.
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Note in passing that for R ∈ � analyticity can only be established if Re ν > 1. Otherwise, the
last integral diverges for rn = −R.

On putting ν = 0, and hence assuming R �∈ �, inverting again the order of summation
and integration (since it can be allowed), and substituting ζ → 1/ζ in the last integral,

G0�(σ, k‖, R) = − 1

4πv0

∑
kn∈�∗

ei(k‖+kn)·R‖
∫ ∞ exp iφn

η

ζ−1 e
1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ

− 1

4π2

(π

2

)1/2 ∑
rs∈�

e−ik‖·rs

∫ ∞

1/η

ζ−1/2 e
1
2 [σ 2/ζ−(R+rs )

2ζ ] dζ. (38)

The restriction Re ζ > 0 going back to the integral representation (29) can now be removed.

4.1. Complementary cases

For completeness, for d − d� = 1 one would begin with the analytic form

Gν�(σ, k‖, R) = − i

2v0

(π

2

)1/2 ∑
kn∈�∗

( |R⊥|
K⊥n

)ν/2

H
(1)
−ν/2(K⊥n|R⊥|) ei(k‖+kn)·R‖ . (39)

Similarly as in the preceding case, Gν� defines for Re ν > 2d� an analytic function of ν for
all values of R⊥ and R‖, provided that it remains R �∈ �. The task is now to find an analytic
continuation Gν� from a domain Re ν > 2d� to a domain containing ν = 1. After repeating
the steps which led from equation (28) to equation (38), on putting ν = 1 and inverting again
the order of summation and integration, one finds for d� = 2, d = 3 [4, 20],

G0�(σ, k‖, R) = − 1

2πv0

(π

2

)1/2 ∑
kn∈�∗

ei(k‖+kn)·R‖
∫ ∞ exp iφn

η

ζ−1/2 e
1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ

− 1

4π2

(π

2

)1/2 ∑
rs∈�

e−ik‖·rs

∫ ∞

1/η

ζ−1/2 e
1
2 [σ 2/ζ−(R+rs )

2ζ ] dζ. (40)

Similarly, for d� = 1, d = 2 one arrives (see, e.g., [29]) at

G0�(σ, k‖, R) = − 1

2πv0

(π

2

)1/2 ∑
kn∈�∗

ei(k‖+kn)·R‖
∫ ∞ exp iφn

η

ζ−1/2 e
1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ

− 1

4π

∑
rs∈�

e−ik‖·rs

∫ ∞

1/η

ζ−1 e
1
2 [σ 2/ζ−(R+rs )

2ζ ] dζ. (41)

It can be proved directly (see, e.g., appendix 3 of [21]) that Ewald representations (38),
(40), (41) satisfy equation (4) and the boundary conditions. Therefore, they are required
Green’s function, which provides a posteriori justification of the outlined analytic continuation
procedure.

Since the respective dual representations for a 1D periodicity in 2D and 2D periodicity in
3D are formally identical, the terms involving a sum over reciprocal lattice in equations (40)
and (41) are identical. Surprisingly enough, the terms involving a sum over direct lattice in
equations (38) and (40) are identical too.

4.2. Ewald versus dual representations

One has (see appendix 1 of [21])∫ ∞ exp iφn

η

ζ−1/2 e
1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ = −
√

2π
eiK⊥n|R⊥|

iK⊥n

−
∫ ∞

1/η

ζ−3/2 e
1
2 (K2

⊥n/ζ−|R⊥|2ζ ) dζ
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0

0 η

η

(a)

(b)

Figure 2. (a) Deformation of the integration contour for K2
⊥n > 0 in equations (38), (40), (41)

before Jordan’s lemma is applied to the quarter circles. (b) For K2
⊥n < 0, the integration contour

in equations (38), (40), (41) can be considered as a sum of two contours, one from η to zero and
the other from zero to +∞.

and∫ ∞ exp iφn

η

ζ−1 e
1
2 (K2

⊥nζ−|R⊥|2/ζ ) dζ = π iH(1)
0 (K⊥n|R⊥|) −

∫ ∞

1/η

ζ−1 e
1
2 (K2

⊥n/ζ−|R⊥|2ζ ) dζ.

For K2
⊥n > 0 this can be shown by deforming integration contour in equations (38), (40),

(41) to that shown in figure 2(a) and upon invoking Jordan’s lemma for the integration along
quarter circles ([48], p 115). For K2

⊥n < 0 one then takes the contour as shown in figure 2(b).
Therefore, a comparison of dual representations (21), (23) of quasi-periodic free-space Green’s
function with their respective Ewald representations (38), (40), (41) shows that to each term of
a dual representation the second term (integral above) is added to make the series convergent
uniformly with respect to R⊥ (provided that R �∈ �). These terms are then compensated by
the series over �.

For a sufficiently large η, G0� can often be well approximated by the series over �. This
approximation to G0� is called the incomplete Ewald summation [53].

5. Calculation of the lattice sums DL

The lattice sums DL have been defined by equation (8) as the expansion coefficients of
G0� in terms of the regular (cylindrical in 2D, spherical in 3D) waves or, alternatively, as
the Schlömilch series (11). Analytic closed expression of the lattice sums DL can only be
obtained in the particular case of l = 0 and a 1D lattice � with a period a in 3D [14, 15].
Indeed, assuming the elementary identity

ln(1 − z) = −
∑
n>0

zn

n
, (42)

one obtains ∑
rn∈�

′ eik‖·rn
eiσrn

rn

= 1

a

∑
n�=0

′ eiak‖n eiσa|n|

|n|

= −1

a
{ln[1 − eia(σ−k‖)] + ln[1 − eia(σ+k‖)]}

= −1

a
ln[e2iaσ − 2 cos(k‖a) eiaσ + 1]. (43)
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Hence, upon using that −iACY00 = −iσ/
√

4π in 3D,

D00(σ, k‖) = −i
σ√
4π

+
1√
4πa

ln[e2iaσ − 2 cos(k‖a) eiaσ + 1]

= 1√
4πa

ln{2[cos(σa) − cos(k‖a)]}, (44)

which is up to the prefactor of −1/(
√

4πa), the γ̂ -function of Karpeshina (see equation (29)
of [13] for σ = is). (When solving equation (12), the principal branch of logarithm is
assumed in the above expression for D00 and our spectral parameter α̃ has also been rescaled
compared to that of Karpeshina [13, 47] with the above prefactor.) In accordance with our
notation, boldface rn and k‖ are numbers which can be either positive or negative, whereas
rn � 0 stands for absolute value. (It is recalled here that the energy operator in the one-particle
theory of periodic point interactions is constructed in terms of the operator of multiplication
by D00 (γ function of Karpeshina [13, 47]) and that D00 determines the spectrum according
to equation (12).)

Invoking that DL’s are independent of R, the lattice sums in all remaining cases are
calculated as [4, 20, 26]

DL(σ, k‖) = lim
R→0

1

J|l|(σR)

∮
Y∗

L(R̂)D�(σ, k‖, R) d�R, (45)

where
∮

d�R denotes the angular integration over all directions of R. In calculating DL,
the respective Ewald representations (38), (40), (41) of G0� are substituted in the defining
equation (7) for D�(σ, k‖, R). The two series in the respective Ewald representations (38),
(40), (41) are uniformly convergent with respect to R so that the series can be termwise
integrated when DL is calculated according to equation (45). Following a hybrid character of
the Ewald representations (38), (40), (41), the respective DL are conventionally written as a
sum [2, 4, 20, 26, 27]

DL(σ, k‖) = D
(1)
L (σ, k‖) + D

(2)
L (σ, k‖) + D

(3)
L (σ ), (46)

where D
(1)
L

(
D

(2)
L

)
involves a sum over reciprocal lattice (all rn �= 0 terms of the direct lattice).

D
(3)
L is the term which combines G

p

0 (R) and the rn = 0 contribution of the direct lattice sum
G2. D

(3)
L is only nonzero for l = 0,

D
(3)
L = D

(3)
0 δL0. (47)

In the following, the respective contributions D
(1)
L ,D

(2)
L and D

(3)
L will be calculated. For

reader not interested in an explicit derivation of results, the resulting expressions are given
by equations (83), (102) and (118) (see equations (85), (102), (118) for d� = 2, d = 3 and
equations (86), (103), (119) for d� = 1, d = 2).

5.1. Consequences of the reflection symmetry for the lattice sums in the quasi-periodic case

Assuming standard spherical coordinates, one has

YL(R̂‖ − R̂⊥) = (−1)l+mYL(R̂‖ + R̂⊥). (48)

Therefore, for the lattice plane perpendicular to the z-axis

DL ≡ 0, l + m odd, (49)

for both d� = 1, d = 3 and d� = 2, d = 3 cases. This identity follows upon combining the
property (E.2) with the expansion (8). In fact (see equation (47) and equations (67), (100)),
it will be shown that (for the lattice plane perpendicular to the z-axis) the property (49) holds
for each of the contributions D

(j)

L , j = 1, 2, 3, separately.
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5.2. Calculation of D
(1)
L

5.2.1. General part. As it has been alluded to above, the contribution D
(1)
L derives from the

sum over reciprocal lattice � in the corresponding Ewald representation of G0�. According
to the Ewald representations (38), (40), (41) of the quasi-periodic Green’s functions,

D
(1)
L = − 1

2v0(2π)c
I

(1)
L , (50)

where

I
(1)
L = lim

R→0

1

j|l|(σR)

∮
Y ∗

L(R̂) ei(k‖+ks )·R‖
∫ ∞ exp iφn

η

ζ−c e
1
2 (K2

⊥s ζ−|R⊥|2/ζ ) dζ d�R, (51)

and 1/2 � c = (d − d�)/2 � 1. The exponential decrease of the integrand with increasing ζ

for the integration over ζ (assuming as usual K⊥s �= 0) guarantees that the order of integration
can be inverted. In order to perform the latter integral, the exponential is expanded into a
power series of |R⊥|2 resulting in

I
(1)
L ≡

∞∑
n=0

(−1)n

2nn!

∫ ∞ exp iφn

η

ζ−c−n eK2
⊥s ζ/2 dζ

×
(

lim
R→0

1

j|l|(σR)

∮
Y ∗

L(R̂) ei(k‖+ks )·R‖ |R⊥|2n d�R

)

=
∞∑

n=0

(−1)n

2nn!

(
e−π i K

2
⊥s

2

)n+c−1

�

(
1 − c − n, e−π i K

2
⊥sη

2

)
I l
ζ (n)

= 21−c e(1−c)π i
∞∑

n=0

I l
ζ (n)

22nn!
�

(
1 − c − n, e−π i K

2
⊥sη

2

)
K

2(n+c−1)
⊥s , (52)

where

I l
ζ (n) = lim

R→0

1

j|l|(σR)

∮
Y ∗

L(R̂) ei(k‖+ks )·R‖ |R⊥|2n d�R, (53)

and � is the incomplete gamma function (see equation (6.5.3) of [16]). In the second equality
in (52) we have used in the integral over ζ the substitution

ζ = 2 eπ i

K2
⊥s

t, (54)

which leads to∫ ∞ exp iφn

η

ζ−c−n eK2
⊥s ζ/2 dζ =

(
− 2

K2
⊥s

)1−c−n ∫ ∞

e−π iK2
⊥sη/2

t−c−n e−t dt

=
(

− 2

K2
⊥s

)1−c−n

�

(
1 − c − n, e−π i K

2
⊥sη

2

)
. (55)

In the final equality in (52) we have substituted(
e−π i K

2
⊥s

2

)n+c−1

= e(1−c)π i21−c (−1)n

2n
K

2(n+c−1)
⊥s . (56)

Now upon combining equations (50) and (52)

D
(1)
L = − 1

(2π)c

(−2)1−c

2v0

∑
ks∈�∗

∞∑
n=0

1

22nn!
�

(
1 − c − n, e−π i K

2
⊥sη

2

)
K

2(n+c−1)
⊥s

×
(

lim
R→0

1

j|l|(σR)

∮
Y ∗

L(R̂) ei(k‖+ks )·R‖ |R⊥|2n d�R

)
. (57)
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It order to finish the calculation of D
(1)
L , it remains to perform the angular integration and the

limit R → 0. In the following, this limit will be performed for various particular cases.

5.2.2. The case of a 1D periodicity in 3D. If the 1D lattice is oriented along the x-axis,
R⊥ = R cos θ, R‖ = R sin θ cos φ, and hence

|R⊥| = R| cos θ |, (k‖ + ks) · R‖ = |k‖ + ks |R sin θ cos
(
φk‖+ks

− φ
)
, (58)

where φu is the polar angle of the vector u in the plane containing �∗ (�). The only difference
with respect to the case of a 2D periodicity in 3D, which has been treated by Kambe [4, 20, 21],
is merely in that the values of φk‖+ks

are no longer from the interval [0, 2π) but are restricted
to either 0 or π . According to equation (52), one has

I
(1)
L = im−|m|Nl|m|

∞∑
n=0

1

22nn!
�

(
−n, e−π i K

2
⊥sη

2

)
K2n

⊥s

(
lim
R→0

R2nI n
�

jl(σR)

)
, (59)

where I n
� involves the following angular integral (d� = sin θ dθ dφ):

I n
� ≡

∫ π

0
sin θ dθP

|m|
l (cos θ)(cos θ)2n

∫ 2π

0
e−imφ+i|k‖+ks |R sin θ cos(φk‖+ks −φ) dφ. (60)

Integrating first by φ, one finds

I n
� = 2π i|m| e−imφk‖+ks

∫ π

0
P

|m|
l (cos θ)(cos θ)2nJ|m|(|k‖ + ks |R sin θ)θ dθ, (61)

where we have used that∫ 2π

0
e−imφ+iz cos(φ0−φ) dφ = 2π i|m| e−imφ0J|m|(z). (62)

The latter identity can be derived from (cf equations (9.1.44-45) of [16])

eiz cos φ =
∞∑

l=−∞
i|l|J|l|(z) eilφ. (63)

Since Jν(z) is an entire function of z, the Bessel function in equation (61) can be expanded
into power series of its argument (see equation (9.1.10) of [16]),

J|m|(z) =
( z

2

)|m| ∞∑
j=0

(−z2/4)j

j !(|m| + j)!
. (64)

Afterward equation (61) becomes

I n
� = 2π i|m| e−imφk‖+ks

∞∑
j=0

(−1)j
[|k‖ + ks |R]|m|+2j

2|m|+2j j !(|m| + j)!
I

j

θ , (65)

where

I
j

θ ≡
∫ π

0
(cos θ)2n(sin θ)|m|+2j+1P

|m|
l (cos θ) dθ =

∫ 1

−1
x2n(1 − x2)j+|m|/2P

|m|
l (x) dx. (66)

It will turn out that, in addition to the general property (49), each term D
(j)

lm ≡ 0, j =
1, 2, 3, for l − |m| odd. In particular, one can show that the integral (66) vanishes unless
l − |m| is even, i.e.,

D
(1)
lm ≡ 0, l − |m| odd. (67)

Indeed,

P
|m|
l (cos θ) = (−1)l−|m|P |m|

l [cos(π − θ)]. (68)
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Now, if F is a real function such that F(θ) = F(π − θ), then for l − |m| even one finds∫ π

0
F(θ)P

|m|
l (cos θ) dθ = 2

∫ π/2

0
F(θ)P

|m|
l (cos θ) dθ. (69)

On the other hand, for l − |m| odd the integral vanishes. Since in our case

F(θ) ≡ (cos θ)2n(sin θ)|m|+2j+1 = F(π − θ),

it follows that I
j

θ ≡ 0 for l − |m| odd.
For l − |m| even,

lim
R→0

R2nI n
�

jl(σR)
→ 0, j + n >

l − |m|
2

. (70)

Therefore, one only needs to investigate the case

j + n � l − |m|
2

. (71)

Upon expanding (1 − x2)j in (66) according to binomial theorem, I
j

θ is rewritten as

I
j

θ =
j∑

s=0

(−1)s
(

j

s

)∫ 1

−1
x2(n+s)(1 − x2)|m|/2P

|m|
l (x) dx. (72)

According to equation (2.17.2.7) of [77], the integral∫ 1

−1
xt (1 − x2)|m|/2P

|m|
l (x) dx (73)

vanishes unless

|m| � l � t + |m|, (74)

or, in our case, unless

|m| � l � 2n + 2s + |m| ⇐⇒ n + s � l − |m|
2

. (75)

Upon combining the conditions (71) and (75), it follows that the only nonzero contribution to
I

j

θ in the R → 0 limit arises when simultaneously

s = j and n + j = l − |m|
2

. (76)

In the latter case, equation (2.17.2.6) of [77] implies

I
j

θ = (−1)j
2l+1(2n + 2j)!(l + |m|)![n + j + (l + |m|)/2]!

[n + j − (l − |m|)/2]!(2n + 2j + l + |m| + 1)!(l − |m|)!

= (−1)j
2l+1l!(l + |m|)!

(2l + 1)!
. (77)

Here in the last equation we have substituted for n + j according to equation (76). (Note
in passing that equation (2.17.2.6) of [77] differs by a factor (−1)m/2 compared to equation
(7.132.5) of [78] due to a slightly different definition of associated Legendre functions.) The
constraints (76) imply

|m| + 2j = l − 2n, (78)

and

n � l − |m|
2

. (79)
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Therefore, the sum over n in I
(1)
L becomes a finite sum.

Consequently, as R → 0,

R2nI n
� ∼ e−imφk‖+ks (−1)j

2π i|m|[|k‖ + ks |]l−2n

2l−2n[(l − |m|)/2 − n]![(l + |m|)/2 − n]!
(−1)j

2l+1l!(l + |m|)!
(2l + 1)!

Rl

= e−imφk‖+ks
2π i|m|[|k‖ + ks |]l−2n

2l−2n[(l − |m|)/2 − n]![(l + |m|)/2 − n]!

2l+1l!(l + |m|)!
(2l + 1)!

Rl. (80)

Now (equation (10.1.2) of [16])

jl(σR) → 2l l!

(2l + 1)!
(σR)l (R → 0). (81)

Therefore, in the limit R → 0,

I
(1)
L = 2

√
π

im

2l
[(2l + 1)(l + |m|)!(l − |m|)!]1/2 e−imφk‖+ks

×
(l−|m|)/2∑

n=0

�

(
−n, e−π i K

2
⊥sη

2

)
[|k‖ + ks |/σ ]l−2n[K⊥s/σ ]2n

n![(l − |m|)/2 − n]![(l + |m|)/2 − n]!
. (82)

Consequently, for l − |m| even,

D
(1)
lm (σ, k‖) = − 1

4πv0
I

(1)
L

= − 1

2
√

πv0

im

2l
[(2l + 1)(l + |m|)!(l − |m|)!]1/2

∑
ks∈�∗

e−imφk‖+ks

×
(l−|m|)/2∑

n=0

�

(
−n, e−π i K

2
⊥sη

2

)
[|k‖ + ks |/σ ]l−2n[K⊥s/σ ]2n

n![(l − |m|)/2 − n]![(l + |m|)/2 − n]!
, (83)

whereas (equation (67))

D
(1)
lm ≡ 0, l − |m| odd. (84)

5.2.3. Complementary cases. For d� = 2 and d = 3, provided that lattice plane is
perpendicular to the z-axis, one can repeat most of the steps presented here, the only change
being c = 1/2 instead of c = 1, and thereby arriving at the Kambe’s expression [20, 22, 27]

D
(1)
lm (σ, k‖) = − 1

2v0

√
2π

I
(1)
L

= − 1

σv0

i−m+1

2l
[(2l + 1)(l + |m|)!(l − |m|)!]1/2

∑
ks∈�∗

e−imφk‖+ks

×
(l−|m|)/2∑

n=0

�

(
1/2 − n, e−π i K

2
⊥sη

2

)
[|k‖ + ks |/σ ]l−2n[K⊥s/σ ]2n−1

n![(l − |m|)/2 − n]![(l + |m|)/2 − n]!
.

(85)

For d� = 1 and d = 2 one then finds [26]

D
(1)
l (σ, k‖) = − i|l|+1|l|!√

2σv0

∑
ks∈�∗

[|l|/2]∑
n=0

1

22nn!
�

(
1/2 − n, e−π i K

2
⊥sη

2

)

× [|k‖ + ks |/σ ]|l|−2n[K⊥s/σ ]2n−1

(|l| − 2n)!

{
exp

[−i(|l| − 2n)φk‖+ks

]
, l � 0,

exp
[
i(|l| − 2n)φk‖+ks

]
, l < 0,

(86)
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where v0 is now the length of the primitive cell of � and [|l|/2] stands for the integral part of
|l|/2.

5.2.4. Convergence and recurrence relations. In virtue of the asymptotic behaviour

�(a, z) ∼ za−1 e−z as z → ∞, |arg z| < 3π/2 (87)

(equation (6.5.32) of [16]), it is straightforward to verify that convergence of the series on the
rhs of expressions (83), (85), (86) is exponential for sufficiently large K⊥s . One can verify that
the lattice sums D

(1)
L are dimensionless for d = 2 whereas for d = 3 the lattice sums D

(1)
L have

dimension [1/length] (see discussion below equation (F.4)). From the computational point
of view, the incomplete gamma function in final expressions (83), (85), (86) can be derived
successively by the recurrence formula [20, 22]

b�(b, x) = �(b + 1, x) − xb e−x, (88)

from the value for n = 0:

�(1/2, x) =



√
π − 2

∫ √
x

0 e−t2
dt = √

π erfc(
√

x), arg x = 0
√

π ± 2i
∫ √−x

0 et2
dt, arg x = ∓π.

(89)

5.3. Calculation of D
(2)
L

5.3.1. General part. As it has been alluded to above, the contribution D
(2)
L derives from

the sum over direct lattice � in the Ewald representation of G0�, but with the term rn = 0
excluded. According to equation (45) taken in combination with the representations (38), (40),
(41) of the quasi-periodic Green’s functions,

D
(2)
L = − (2π)c

8π2
I

(2)
L , (90)

where

I
(2)
L =

∫ ∞

1/η

ζ−c

(
lim
R→0

1

J|l|(σR)

∮
Y∗

L(R̂) e
1
2 [σ 2/ζ−(R+rs )

2ζ ] d�R

)
dζ. (91)

Here, c = 1/2 for d = 3 and c = 1 for d = 2. Using the plane-wave expansion (B.7), which
is also valid for complex arguments (see, e.g., appendix 1 of [4] or appendix A of review by
Tong [65]),

e−(R+rs )
2ζ/2 = e−(R2+r2

s )ζ/2 ei(iζrs )·R = A e−(R2+r2
s )ζ/2

∑
L

i|l|J|l|(iζ rsR)Y∗
L(r̂s)YL(R̂). (92)

The absolute value |l| here is only relevant for d = 2 provided that the range of angular
momenta is taken to be −∞ < l < ∞.

Substituting (92) back into equation for I
(2)
L , taking the limit (45) and using that in any

dimension

Jl (az)

Jl (bz)
→ al

bl
as z → 0, (93)

I
(2)
L = Ai|l|Y∗

L(r̂s)
(irs)

|l|

σ |l|

∫ ∞

1/η

ζ |l|−c e
1
2 (σ 2/ζ−r2

s ζ ) dζ. (94)

The substitution

ζ = σ 2

2u
, r2

s ζ = σ 2r2
s

2u
, dζ = − σ 2

2u2
du, α = σ 2η

2
, (95)
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then yields

I
(2)
L = A(−1)|l|2−|l|−1+cσ 2−2c(σ rs)

|l|Y∗
L(r̂s)

∫ α

0
uc−|l|−2 eu−σ 2r2

s /(4u) du. (96)

To this end, the formula for D
(2)
L is valid in any quasi-periodic case.

5.3.2. Quasi-periodic cases in 3D. In 3D one has c = 1/2 for both 1D and 2D periodicities.
Equation (96) then yields

I
(2)
L = 4π(−1)l2−l−1/2σ(σrs)

lY ∗
L(r̂s)

∫ α

0
u−l−3/2 eu−σ 2r2

s /(4u) du. (97)

After substituting the result into (90),

D
(2)
L = − (−1)lσ

2l
√

4π

∑
rs∈�

′ e−ik‖·rs (σ rs)
lY ∗

L(r̂s)

∫ α

0
u−l−3/2 eu−σ 2r2

s /(4u) du, (98)

where prime in
∑ ′ indicates as usual that the term with rs = 0 is omitted. Since, for l + m

odd,

Ylm(π/2, φ) ≡ 0, (99)

D
(2)
L ≡ 0, l + m odd. (100)

(We recall here that the periodicity direction(s) has (have) been assumed to be perpendicular
to the z-axis.) This confirms (see equation (67)) that, in addition to the general property (49),
each term D

(j)

lm ≡ 0, j = 1, 2, 3, for l − |m| odd. In the remaining cases for l + m even [4, 20,
22],

Y ∗
lm(π/2, φ) = (−1)(m−|m|)/2 (−1)(l+|m|)/2

2l
√

4π

[(2l + 1)(l − |m|)!(l + |m|)!]1/2

[(l − |m|)/2]![(l + |m|)/2]!
e−imφ. (101)

Therefore,

D
(2)
lm (σ, k‖) = − σ

4π

(−1)l(−1)(l+m)/2

22l

[(2l + 1)(l − |m|)!(l + |m|)!]1/2

[(l − |m|)/2]![(l + |m|)/2]!

×
∑
rs∈�

′ e−ik‖·rs−imφrs (σ rs)
l

∫ α

0
u−l−3/2 exp

[
u − σ 2r2

s

4u

]
du, (102)

where α = σ 2η/2 (see equation (95)). Hence, the respective expressions for D
(2)
lm , for

d� = 1, d = 3 and for d� = 2, d = 3 [20, 22, 27], are formally identical (provided that
periodicity direction(s) is (are) perpendicular to the z-axis), the only difference being in the
lattice dimension.

5.3.3. Complementary case of a 1D periodicity in 2D. In the remaining case for d� = 1 and
d = 2, in which case c = 1, one finds by a slight modification of the preceding derivation [26]

D
(2)
l (σ, k‖) = − (−1)|l|

2|l|+1
√

2π

∑
rs∈�

′ e−ik‖·rs (σ rs)
|l| e−ilφrs

∫ α

0
u−|l|−1 exp

(
u − σ 2r2

s

4u

)
du.

(103)
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5.3.4. Convergence and recurrence relations. Similarly as in the case of D
(1)
L , convergence

of the series for D
(2)
L on the rhs of expressions (102), (103) is exponential for sufficiently large

rs . Indeed, integrals

U|l| =
∫ α

0
uc−|l|−2 eu−σ 2r2

s /(4u) du (104)

are finite integrals. Now, for |σrs | > |l| + 2 − c, the integrand is monotonically increasing
from zero to (σ 2η/2)c−|l|−2 eσ 2η/2−r2

s /(2η) on the integration interval. Therefore,

|(σ rs)
|l|U|l|| < σ 2(c−1)−|l|(η/2)c−|l|−1r |l|

s eσ 2η/2−r2
s /(2η). (105)

From the computational point of view, the integral on the rhs of the resulting expressions
can easily be performed by a simple recurrence. Indeed, knowing the values of U0 and U1,
the respective integrals U|l| can be determined using recursion relation(σrs

2

)2
U|l|+1 = (|l| + 1 − c)U|l| − U|l|−1 + α−|l|−1+c eα−σ 2r2

s /(4α). (106)

The recurrence here follows, as suggested by Kambe (see appendix 2 of [4]), from a simple
integration by parts.

As a consistency check, note that for d = 2 the lattice sums D
(2)
L are dimensionless,

whereas for d = 3 the lattice sums D
(2)
L have dimension [1/length] (see discussion below

equation (F.4)).

5.4. Calculation of D
(3)
L

5.4.1. General part. According to equation (47), the only nonzero term is D
(3)
00 or, for the

sake of notation, D
(3)
0 . In 3D, for both 1D and 2D periodicities, the D

(3)
0 term is calculated as

the limit

D
(3)
0 = lim

R→0

1

J0(σR)Y0

[
− 1

4π2

(π

2

)1/2
∫ ∞

1/η

ζ−1/2 e
1
2 (σ 2/ζ−R2ζ ) dζ − G

p

0 (σ, R)

]
. (107)

Similarly, in 2D case

D
(3)
0 = lim

R→0

1

J0(σR)Y0

[
− 1

4π

∫ ∞

1/η

ζ−1 e
1
2 (σ 2/ζ−R2ζ ) dζ − G

p

0 (σ, R)

]
. (108)

It is recalled here that G
p

0 (σ, R) in equations (107) and (108) is the corresponding singular, or
principal-value, part of G+

0(σ, R) (see equation (6)).
In any dimension Y0 = A−1/2 (equation (B.5)), where A is given by equation (B.8), and

(see equations (9.1.12), (10.1.11) of [16])

J0(σR) → 1 (R → 0). (109)

Hence, calculation of D
(3)
0 requires to perform integral

I (3) =
∫ ∞

1/η

ζ−c e
1
2 (σ 2/ζ−R2ζ ) dζ (110)

for either c = 1/2 (d = 3) or c = 1 (d = 2). Expanding eσ 2/(2ζ ) into power series and
integrating term by term yields

I (3) =
∞∑

n=0

σ 2n

2nn!

∫ ∞

1/η

ζ−c−n e−R2ζ/2 dζ. (111)
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Since all terms in the sum are positive, the exchange of integration and summation is justified
whenever one shows that one of the sides exists (this will be shown later on). Upon substituting
ζ = 2t/R2,

I (3) = (R2/2)c−1
∞∑

n=0

(σ 2R2)n

22nn!

∫ ∞

R2/(2η)

t−c−n e−t dt

= (R2/2)c−1
∞∑

n=0

(σR)2n

22nn!
�[−n − c + 1, R2/(2η)],

where as usual �(a, x) is an incomplete gamma function (see equation (6.5.3) of [16]).
According to equations (107) and (108), we are only interested in the limit R → 0. For
n > 1 − c, which for a given c = 1/2, 1 translates into n � 1, one can integrate by parts,
yielding∫ ∞

R2/(2η)

t−c−n e−t dt = 1

n + c − 1

(
R2

2η

)−c−n+1

e−R2/(2η) + O[R−2(c+n−2)]. (112)

Therefore,

I (3) =
∞∑

n=1

1

n + c − 1

(σ 2η)n

2nn!
+ (R2/2)c−1

∫ ∞

R2/(2η)

t−c e−t dt + O(R2). (113)

A further treatment differs in different dimensions.

5.4.2. Quasi-periodic cases in 3D. In 3D one has c = 1/2 for both 1D and 2D periodicities.
Hence, ∫ ∞

R2/(2η)

t−c e−t dt =
(∫ ∞

0
−

∫ R2/(2η)

0

)
t−1/2 e−t dt

= �(1/2) − 2
R

(2η)1/2
e−R2/(2η) + O(R3), (114)

where �(1/2) = √
π . This asymptotic is consistent with that obtained by writing

�[1/2, R2/(2η)] =
∫ ∞

R2/(2η)

t−1/2 e−t dt = √
π erfc(R/

√
2η) (115)

(see equation (6.5.17) of [16]) and using that

erfc z = 1 − 2z√
π

+ O(z2) as z → 0 (116)

(see equation (7.2.4) of [16]). Therefore,

I (3) =
√

2π

R
+

σ√
2

∞∑
n=0

(σ 2η/2)n−1/2

n!(n − 1/2)
+ O(R2) as R → 0. (117)

Collecting everything together back to equation (107) and taking the limit, the singular first
term in I (3) cancels against G

p

0 (σ, R) leaving behind

D
(3)
lm (σ ) = − σ

4π

∞∑
n=0

(σ 2η/2)n−1/2

n!(n − 1/2)
δlm,00. (118)

It is emphasized here that the respective contributions D
(3)
lm for a 1D periodicity in 3D and a

2D periodicity in 3D (see [20, 22, 27]) are identical.
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5.4.3. Complementary case of 1D periodicity in 2D. For d� = 1 and d = 2, in which case
c = 1, one finds [26]

D
(3)
l (σ ) = − 1

2
√

2π

[
γ + ln(σ 2η/2) +

∞∑
n=1

(σ 2η/2)n

n!n

]
δl0 = 1

2
√

2π
Ei(σ 2η/2)δl0, (119)

where Ei is an exponential integral and γ ≈ 0.577 215 6649 is the Euler constant (see
equations (5.1.10) and (6.1.3) of [16], respectively). Note that, for � oriented along the
x-axis, D

(j)

l = D
(j)

−l , j = 1, 2, and hence, Dl = D−l , in accord with the fact that G0� only
depends on y via |y| [33, 35].

5.4.4. Convergence. Unlike preceding cases, convergence of series on the rhs of equations
(118) and (119) is even faster than exponential. This can easily be verified by using Stirling’s
formula (equation (6.1.37) of [16])

(n + 1)! ∼
√

2πnnn e−n as n → ∞. (120)

Again, as a consistency check, note that for d = 2 the lattice sums D
(3)
L are dimensionless,

whereas for d = 3 the lattice sums D
(3)
L have dimension [1/length] (see discussion below

equation (F.4)). It is recalled here that η in the above formulae has dimension of [length]2.

6. Laplace equation

The quasi-periodic solutions of the Laplace equation are used to describe potential flows in
fluid dynamics between parallel planes and in rectangular channels [30]. Indeed, a Green’s
function representing a point source and satisfying the respective von Neumann and Dirichlet
boundary conditions on a flow channel walls can be written as a sum and difference of an
appropriate G0� (corresponding to 1D periodicity in 3D for the flow between parallel planes
and to 2D periodicity in 3D for the flow in a rectangular channel) taken at two different spatial
points [30]. Another important class of problems associated with the quasi-periodic solutions
of Laplace equation arises in various problems in electrostatics and elastostatics [43, 44, 46].

The relevant representations of G0� for the Laplace equation can in principle be obtained
by taking the limit σ → 0 in the resulting expressions for the Helmholtz equation. In 3D,
h

(1)
0 (σ |r − r′ + rs |) in the Schlömilch series (1) exhibits a regular limit

h
(1)
0 (σ |r − r′ + rs |) → − i

|r − r′ + rs | as σ → 0 (121)

(see equation (24)) and corresponding G+
0(σ, R) goes smoothly to the free-space Green’s

function of 3D Laplace equation. However, H
(1)
0 (σ |r − r′ + rs |) displays a logarithmic

singularity in the same limit (see equations (9.1.3), (9.1.13) of [16]). Hence, G+
0(σ, R) does

not reduce to the free-space Green’s function G+
0(R) = (1/2π) ln R of 2D Laplace equation.

Surprisingly enough, in the case of dual and Ewald representations of G0� the logarithmic
singularities cooperate in such a way that the limit σ → 0 turns out to be regular even for
d = 2 (see below).

In the following, the limit σ → 0 will be discussed in the case of dual and Ewald
representations of G0�, and in the case of lattice sums D00 in 3D. In taking the limit, both
G0� and D00 will be considered formally as functions of two independent variables σ and k‖.
A reason for doing so is, for instance, solving an implicit equation (12). The limit k‖ → 0
will be, if possible, considered afterwards.
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Note that the case of 1D periodicity with period a in the x-direction in 2D is rather
academic in what follows, since in the latter case the Green’s function can be calculated in a
closed form [30]

G0�(R) = 1

π
ln

[
2
∣∣∣sin

π

a
(x + iy)

∣∣∣] . (122)

6.1. Dual representations

Since K⊥n → i|k‖ + kn| in the limit σ → 0 (cf equation (17)), in all quasi-periodic cases
the limit is established (see equation (26)) by replacing H+

0(K⊥n|R⊥|) in equations (21), (23)
with H+

0(i|k‖ + kn‖R⊥|). However, for purely imaginary argument ix with x > 0 the Hankel
functions H+

0(ix) are related to modified Bessel functions of third kind (see equations (9.6.4)
and (10.2.15) of [16]). This results in rapidly decaying terms and exponential convergence.
As it has been alluded to earlier, absolute exponential convergence of the dual representations
can only be established under the assumption of R⊥ �= 0.

However, the resulting dual representations are singular in the limit k‖ → 0. Then,
K⊥n → ikn and the denominator in equations (21), (23) vanishes for kn = 0.

6.2. Ewald representations

The σ → 0 limit can also be easily taken in the respective Ewald integral representations
(38), (40), (41) of free-space quasi-periodic Green’s functions: simply substitute in the above
expressions φn ≡ 0 and K2

⊥n = −|k‖ + kn|2. Using that the integrals in the series over � can
be expressed in the σ → 0 limit in terms of incomplete gamma functions (equation (6.5.3)
of [16]), one finds for the respective Ewald representations (38), (40), (41) the following
expressions:

G0�(k‖, R) = − 1

4πv0

∑
kn∈�∗

ei(k‖+kn)·R‖
∫ ∞

η

ζ−1 e− 1
2 (|k‖+kn|2ζ+|R⊥|2/ζ ) dζ

− 1

4π2

(π

2

)1/2 ∑
rs∈�

e−ik‖·rs

√
2�[1/2, |R + rs |2/(2η)]

|R + rs | (123)

for 1D in 3D,

G0�(k‖, R) = − 1

2πv0

(π

2

)1/2 ∑
kn∈�∗

ei(k‖+kn)·R‖
∫ ∞

η

ζ−1/2 e− 1
2 (|k‖+kn|2ζ+|R⊥|2/ζ ) dζ

− 1

4π2

(π

2

)1/2 ∑
rs∈�

e−ik‖·rs

√
2�[1/2, |R + rs |2/(2η)]

|R + rs | (124)

for 2D in 3D and

G0�(k‖, R) = − 1

2πv0

(π

2

)1/2 ∑
kn∈�∗

ei(k‖+kn)·R‖
∫ ∞

η

ζ−1/2 e− 1
2 (|k‖+kn|2ζ+|R⊥|2/ζ ) dζ

− 1

4π

∑
rs∈�

e−ik‖·rs �[0, |R + rs |2/(2η)] (125)

for 1D in 2D. The Laplace limit of the respective Ewald integral representations then follows
straightforwardly by letting k‖ → 0 in the above expressions (123)–(125).

Regarding convergence speed, in virtue of the asymptotic �(a, z) ∼ za−1 e−z for
z → ∞, |arg z| < 3π/2 (equation (6.5.32) of [16]), the respective Ewald representations
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remain to be exponentially convergent in the σ → 0, k‖ → 0 limit. Note in passing
that �[1/2, |R + rs |2/(2η)] in equations (123), (124) can be expressed via error function
(equation (115)) as

�[1/2, |R + rs |2/(2η)] = √
π erfc(|R + rs |/

√
2η) (126)

(equation (6.5.17) of [16]). An alternative exponentially convergent series for G0� for 1D
periodicity in 3D in the Laplace case has also been obtained earlier by Linton (see series in
equation (3.26) of [30]). However, our expressions have been derived without any artificial
regularization in the form of a convergence ensuring logarithmically divergent series (cf [30]).

Additionally, absolute exponential convergence of the respective Ewald representations
can also be established for R⊥ = 0, which for numerous alternative representations of G0�

in fluid dynamics provides a problem [30]. Again, the case R⊥ = 0 can only be attained
when R‖ �∈ �. Otherwise the respective Ewald representations become singular. In 3D this
singularity is explicit, since for some rs ∈ � the denominator |R + rs | vanishes. For 1D in
2D one has �[0, |R + rs |2/(2η)] → �(0) for some rs ∈ �, and the singular behaviour follows
from the pole of the gamma function �(z) for z = 0 or more precisely from the asymptotic
(equations (6.5.15), (5.1.11) of [16])

�(0, z) = E1(z) ∼ −γ − ln z −
∞∑

n=1

(−z)n

nn!
as z → 0, (127)

where γ is the Euler constant (equation (6.1.3) of [16]).
As a final remark, note in passing that each of the above Ewald integral representations

(123)–(125) can be regarded as a one-parametric continuous spectrum of the representations
for G0�. The corresponding dual representations of section 6.1 for k‖ �= 0 can be then
recovered in the limit η → 0. Indeed, using Hobson’s integral representation (A.7), the
integrals in the series over �∗ can be expressed in the limit η → 0 in terms of the modified
Bessel functions of the third kind K0 (K0 for d − d� = 2 and K1/2 for d − d� = 1).

6.3. Lattice sums in 3D for l = 0

In the case of lattice sums DL, they are defined as expansion coefficients of free-space quasi-
periodic Green’s functions in terms of regular cylindrical (in 2D or spherical (in 3D) waves
Jl (σR)YL(R̂) (see equation (8))). Since unless l = 0 one has Jl (σR) → 0 in the limit σ → 0
(see equation (109)), the lattice sums DL become singular in the limit for l �= 0. In the case of
l = 0, it is recalled here that D00 (γ function of Karpeshina [13, 47]) determines the energy
operator in the one-particle theory of periodic point (zero-range) interactions and that the D00

determines the underlying spectrum according to equation (12).
From a mathematical point of view, upon substituting (24) for H+

0 into (11) and assuming
for a while an integer lattice, the lattice sum DL for l = 0 in 3D can be expressed in the limit
σ → 0 via Epstein zeta function [9–11]

Z

∣∣∣∣ 0
k‖

∣∣∣∣ (χ, ν) ≡
∑
rn∈�

′ e
ik‖·rn

|rn|ν (128)

as

D00(0, k‖) = − 1√
4π

Z

∣∣∣∣ 0
k‖

∣∣∣∣ (χ, 1), (129)

where we have used equation (B.5) and (equation (C.2)) that C → 0 as σ → 0 in 3D. In
equation (128) for d� = 2, χ is a positive quadratic form defined by the scalar product of the
basis vector of �, χij = ei · ej . (For d� = 1, all the quadratic forms χ reduce to an absolute
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value.) The Epstein zeta function in equation (128) converges absolutely for Re ν > d� and
can be analytically continued to an entire function in the complex variable ν unless k‖ ∈ �∗,
in which case the Epstein zeta function possesses a simple pole for ν = d�.

Interestingly enough, for d� = 2, d = 3, ν = 1, the Epstein zeta function can be
expressed in a closed form in terms of Jacobi theta functions [14]. For a 1D periodicity in 3D
with a period a one then, starting from equation (44), obtains in the limit σ → 0

D00(0, k‖) = 1√
4πa

ln[2 − 2 cos(k‖a)]. (130)

The expression is obviously singular for k‖ ∈ �∗, in accordance with the singularity of the
Epstein zeta function for ν = d� = 1.

Regarding the Epstein zeta functions, note that one could have written dual representations
in the limit σ → 0 for R⊥ = 0, d = 3, and provided that k‖ �∈ �∗, as

G0�(σ, k‖, R) = −eik‖·R‖

2v0
Z

∣∣∣∣k‖
R‖

∣∣∣∣ (χ, 1), (131)

where

Z

∣∣∣∣k‖
R‖

∣∣∣∣ (χ, ν) =
∑

kn∈�∗

′ eikn·R‖

|k‖ + kn|ν . (132)

7. Discussion

7.1. The choice of the Ewald parameter η

Each of the exponentially convergent Ewald representations (38), (40), (41) for G0� can be
viewed as a one-parametric family of representations. A corresponding image-like series (3)
and a dual representation (equations (21), (23)) can be seen then as two ends of the one-
parametric continuous spectrum of the representations for G0�. Obviously, by varying the
point η, at which the integration is split, the convergence characteristics of the representation
can be altered. In most cases, the value of the Ewald parameter η is chosen to balance the
convergence of respective D

(1)
L and D

(2)
L contributions. This leads occasionally to the criticism

that an arbitrary optimization parameter enters the evaluation of lattice sums. In contrast, the
invariance of DL’s on the value of Ewald parameter η serves as a check of a correct numerical
implementation. The Ewald parameter η can often be varied by several orders of magnitude
without affecting the results in a wide frequency window. However, for some range of η

values one can enter a numerically unstable region: the respective D
(1)
L and D

(2)
L contributions

have opposite signs and similar magnitude, which is several orders larger than the magnitude
of resultant DL. This instability can easily be remedied by the choice of some other value
of η, or one can follow the recipe of Berry [24] and chose η to depend on σ and l, and
thereby prevent numerical instability completely. Indeed, although the results presented here
have been obtained by a uniform l-independent choice of η, one can easily modify the above
derivations to the case of l-dependent η [24].

7.2. Numerical convergence

Exponentially convergent representations of lattice sums summarized here provide a significant
advantage in terms of computational speed, while maintaining accuracy, over alternative
expressions of lattice sums. In the special case of a 1D periodicity in 2D this is demonstrated
in table 1. In the case of 1D periodicity in 2D, even with the latest progress due to Yasumoto
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Table 1. Quasi-periodic Green’s function G0� for off-axis incidence at an angle θ = π/8 upon
a 1D lattice oriented along the x-axis in 2D with λ/v0 = 0.23. Here, v0 is the length of a period
(primitive lattice cell) along the x-axis. In rows labelled by D, values of G0� are obtained by a
direct summation of its dual representation (spectral-domain form) (taken from table 3 of [33]).
These data are compared against those in rows labelled by E, obtained by the (complete) Ewald–
Kambe summation (equations (86), (103), (119) with the Ewald parameter η = 0.011). Data in
the respective rows labelled by YY and NMcP are those obtained by Yasumoto and Yoshitomi [35]
and Nicorovici and McPhedran [33] methods.

x y Re G0� Im G0�

D 0.2 0.03 0.117 120 006 144 932 −0.108 131 857 633 201
E 0.117 120 006 144 932 −0.108 131 857 633 206
YY 0.117 120 006 144 941 −0.108 131 857 633 206
NMcP 0.117 120 006 141 860 −0.108 131 857 633 197

D 0.2 0.003 0.115 891 895 634 567 −0.103 497 063 599 642
E 0.115 891 895 634 565 −0.103 497 063 599 651
YY 0.115 891 895 634 577 −0.103 497 063 599 646
NMcP 0.115 891 895 630 095 −0.103 497 063 599 643

D 0.2 0.0003 0.115 881 138 140 449 −0.103 450 147 416 784
E 0.115 881 138 140 448 −0.103 450 147 416 794
YY 0.115 881 138 140 457 −0.103 450 147 416 788
NMcP 0.115 881 138 135 960 −0.103 450 147 416 785

and Yoshitomi [35], it took 40 s to compute G0� on SPARC workstation from lattice sums
with 14 digits accuracy at a single point and frequency. This was in striking contrast to the
calculation of exponentially convergent lattice sums in the so-called bulk cases, i.e., when
G0� is periodic in all space dimensions. The lattice sums for an infinite 2D lattice in 2D [23]
and an infinite 3D lattice in 3D [2]. The respective convergence times (on a PC with Pentium
II processor) for a set of bulk 2D and 3D lattice sums with six digits accuracy are less than
≈0.03 s (for a cut-off value of lmax = 20) [61] and ≈0.8 s (for a cut-off value of lmax = 6)
[60].

The computational time to reproduce a value of G0� in table 1 with accuracy of within
8 × 10−15 of that obtained by a direct summation turns out to be ≈0.2 s, in line with the
respective ≈0.03 s and ≈0.8 s for convergence time of a set of bulk 2D [61] and 3D lattice
sums [60] with six digits accuracy. This should be compared to 1232 s of Nicorovici and
McPhedran [33] or to 40 of Yasumoto and Yoshitomi [35] (the computational times have been
taken from [35]). The exponentially convergent representation (equations (86), (103), (119))
(i) can be implemented numerically more simply and (ii) converges roughly 200 times faster
than the previous best representation [35]. Of the cases tested, the simplest case of a constant
η = 0.011 was chosen.

For a 2D periodicity in 3D, a comparison of the speed and accuracy of exponentially
convergent representation of lattice sums (equations (85), (102), (118)) with respect to
alternative expressions for G0� has been summarized in [27]. Again, exponentially convergent
representation of lattice sums turns out to be convergent for a given accuracy significantly faster.

The reader is invited to perform some additional tests by using several publicly available
F77 codes. In the case of a 2D periodicity in 3D, numerical codes can be obtained from Comput.
Phys. Commun.: for a complex 2D lattice in 3D see routines DLMNEW and DLMSET of
[66], for a simple 2D Bravais lattice in 3D see routine XMAT of [71]. The above codes have
been implemented in electronic, acoustic and electromagnetic LKKR codes and successfully
tested time and again in various cases [22, 64–67, 69, 71, 72]. A limited Windows executable
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which incorporates the lattice sums within a photonic LKKR code for the calculation of
reflection, transmission and absorption of an electromagnetic plane wave incident on a square
array of finite length cylinders arranged on a homogeneous slab of finite thickness is available
following the link http://www.wave-scattering.com/caxsrefl.exe.

F77 source code for a 1D Bravais periodicity in 2D is freely available at http://www.wave-
scattering.com/ola.f (implementation instruction are described on http://www.wave-scattering.
com/dlsum1in2.html). The code has been implemented in a corresponding LKKR code and
successfully tested against experiment in [73]. A limited Windows executable calculating the
reflection, transmission and absorption of an electromagnetic plane wave incident on a square
array of infinite length cylinders in the plane normal to the cylinder axis is available following
the link http://www.wave-scattering.com/rta1in2k.exe.

7.3. Outlook

The present work can be straightforwardly extended in several directions. First, as in bulk
cases [1, 2], for a 2D periodicity in 3D [4], and for a 1D periodicity in 2D [5], the condition
of a simple lattice for a 1D periodicity in 3D can easily be relaxed to an arbitrary periodic
lattice. Note that the case of a non-Bravais lattice additionally requires the calculation of the
series (1) with the origin of coordinates displaced from the lattice by a fixed nonzero vector.
Consequently, the term involving rn = 0 is no longer singular. Therefore, in the latter case
the lattice sums are expressed as the sum of solely D

(1)
L and D

(2)
L , where D

(2)
L does include the

rn = 0 term. These supplementary series can easily be determined following the recipes of
[1–4].

Second, following the work of Ohtaka [67] and Modinos [68] for a 2D periodicity in 3D,
in the vector case of electromagnetic waves for a 1D periodicity in 3D, the lattice sums and
structure constants can easily be obtained from those in the scalar case presented here (2D case
is trivial as it reduces to a scalar problem). It is only required to multiply the scalar quantities
with appropriate numerical factors of geometric origin [58, 59, 67, 68]. This possibility
is a consequence of a fact, as first shown by Stein [80], that vector translational addition
coefficients can be derived from pertinent scalar addition coefficients. A more involved, but
possible, is a generalization of the presented results to semi-infinite cases, when periodicity is
imposed on a half-line or in a half-space only [34, 37, 81].

8. Summary and conclusions

A classical problem of free-space Green’s functions G0� representations of the Helmholtz
equation was studied in various quasi-periodic cases, i.e., when an underlying periodicity is
imposed in less dimensions than is the dimension of an embedding space. Exponentially
convergent series for the free-space quasi-periodic G0� and for the expansion coefficients DL

of G0� in the basis of regular (cylindrical in two dimensions and spherical in three dimension
(3D)) waves, or lattice sums, were reviewed and new results for the case of a one-dimensional
(1D) periodicity in 3D were derived. The derivation of relevant results highlighted the common
part which is applicable to any of the quasi-periodic cases.

Exponentially convergent Ewald representations (38), (40), (41) for G0� (see also
section 6.2) and for lattice sums DL hold for any value of the Bloch momentum and allow
G0� to be efficiently evaluated also in the periodicity plane. After substituting the resulting
expressions for D

(1)
L (equations (83), (85), (86)), D

(2)
L (equations (102), (103)) and D

(3)
L

(equations (118), (118), (119)) into defining equation (46) for DL, an alternative exponentially

http://www.wave-scattering.com/caxsrefl.exe
http://www.wave-scattering.com/ola.f
http://www.wave-scattering.com/ola.f
http://www.wave-scattering.com/dlsum1in2.html
http://www.wave-scattering.com/dlsum1in2.html
http://www.wave-scattering.com/rta1in2k.exe
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x

−δ 0 δ

Figure 3. Integration contour in the Schläfli integral representation of H
(1)
ν .

convergent representation for Schlömilch series (11) of cylindrical and spherical Hankel
functions of any integer order was obtained.

The quasi-periodic Green’s functions of the Laplace equation were studied as the limiting
case of the corresponding Ewald representations of G0� of the Helmholtz equation by taking
the limit of the wave vector magnitude going to zero. Thereby, exponentially convergent
representations of G0� in the Laplace case were obtained, which are convergent (unless
R ∈ �) also in the periodicity plane. An alternative exponentially convergent series for G0�

for 1D periodicity in 3D in the Laplace case has also been obtained earlier by Linton (see series
in equation (3.26) of [30]). However, our expressions have been derived without any artificial
regularization using a convergence ensuring logarithmically divergent series (cf [30]).

The results obtained can be useful for numerical solution of boundary integral equations
for potential flows in fluid mechanics, remote sensing of periodic surfaces, periodic gratings, in
many contexts of simulating systems of charged particles, in molecular dynamics, for solving
the spectrum of particular open resonators, for the description of quasi-periodic arrays of point
interactions in quantum mechanics, linear chains of spheres and nanoparticles in optics and
electromagnetics, and of infinite arrays of resonators coupled to a waveguide, and in various
ab initio first-principle multiple-scattering theories for the analysis of diffraction of classical
and quantum waves.

Appendix A. Integral representations of H (1)
ν

For the Ewald summation with rs = 0 excluded, one uses the Schläfli integral representation,

H(1)
ν (z) = 1

π i

∫
C−

u−ν−1 e
1
2 z(u− 1

u ) du, (A.1)

where the contour C− is the contour which goes from the origin to δ > 0, continues along a
semicircle in the upper half-plane with radius δ to −δ, and goes along the negative real axis to
infinity (see figure 3). This results in an exponentially decreasing integrand at the integration
contour ends for Re z > 0. The Schläfli representation, which yields the Hankel functions
H(1)

ν (z) as moments of the generating function of the Bessel functions Jl(z) (see [7], p 14), is
obtained upon substitution u = et in the integral representation (see (9.1.25) of [16]),

H(1)
ν (z) = 1

π i

∫ ∞+π i

−∞
ez sinh t−νt dt, (A.2)

which is valid for |arg z| < π/2.
Setting in the Schläfli representation (A.1) z = σr and

t = −2r

σ
ξ 2, du = −2

( σ

2r

)−1
ξ dξ, (A.3)

one arrives at

H(1)
ν (σ r) = 2i−2ν−1

π

( σ

2r

)ν
∫

C

ξ−2ν−1 e−r2ξ 2+σ 2/(4ξ 2) dξ, (A.4)
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0

Figure 4. Integration contour in the Ewald integral representation of H
(1)
ν .

where C is the so-called Ewald contour (see figure 4), which leaves the origin along the ray
arg ξ = arg σ − π/4, then returns to the real axis and continues along the positive real axis to
infinity.

Upon substituting in the Schläfli representation (A.1) z = σr and

u = r

σ
ζ, (A.5)

one arrives at

H(1)
ν (σ r) = 1

π i

(σ

r

)ν
∫

C

ζ−ν−1 e
1
2 (r2ζ−σ 2/ζ ) dζ. (A.6)

Let us consider for a while σ as a general real parameter. Then, following discussion at the
end of appendix 2 of [21], the Schläfli integration contour for a positive σ 2 can be deformed
to that shown in figure 2. Afterward, with the use of Jordan’s lemma ([48], p 115) integration
contour can be deformed to that from 0 to i∞ on the imaginary axis. For a negative σ 2 one
would then, as a result of the substitution (A.5), arrive at the contour from 0 to ∞ along the
positive real axis (see appendix 2 of [21]).

Eventually, we provide Hobson’s representation for the modified Bessel functions of the
third kind [11]:(q

k

)ν

Kν(kq) =
∫ ∞

0
ζ ν−1 e− 1

2 (k2ζ+q2/ζ ) dζ. (A.7)

Appendix B. Properties of harmonics YL

Throughout this paper complex harmonics YL (cylindrical, Yl = eilφ/
√

2π , for d = 2 and
spherical for d = 3 [4, 16, 22, 65]; for 1D harmonics see [49]) are used. Under complex
conjugation, they behave according to

Y∗
L(R̂) =



Yl(R̂), 1D,

Y−l (R̂), 2D,

(−1)mYl−m(R̂), 3D.

(B.1)

In 3D the property goes under the name of the Condon–Shortley convention. In any dimension,
the harmonics satisfy the inversion formula

YL(−r̂) = (−1)lYL(r̂), (B.2)

the orthonormality∮
YL(r̂)Y∗

L′(r̂) d� = δLL′ (B.3)
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and closure ∑
L

YL(r̂)Y∗
L(r̂′) = δ�(r, r′). (B.4)

Here, δ�(r, r′) is the delta function on the unit sphere whereas d� is the usual angular measure
which is determined by the relation dr = rd−1 dr d�. (In 1D the angular integral

∮
d� reduces

to the summation over the forward and backward directions.)
Note that in any dimension,

Y0 = 1√
A

. (B.5)

Since Y0 is a constant, combining equation (B.5) with the orthonormality (B.3) of YL yields∮
YL(r̂) d� =

√
AδL0. (B.6)

B.1. The plane-wave expansion

An expansion of the plane-wave expansion in the angular momentum basis is

eik·r = A
∑
L

i|l|J|l|(kr)YL(r̂)Y∗
L(k̂) = A

∑
L

i|l|J|l|(kr)Y∗
L(r̂)YL(k̂), (B.7)

where

A =
∮

d� =



2, 1D,

2π, 2D,

4π, 3D,

(B.8)

where d� is the usual angular measure. The series (B.7) converges uniformly as |k| and r run
through compact sets of R and R

3 (theorem XI.64f of [79]). The absolute value of l is used in
(B.7) in case the sum over angular momenta in 2D runs from minus to plus infinity.

The plane-wave expansion (B.7) is also valid for complex arguments. It is interesting to
note that Y∗

L is no longer the complex conjugate of YL for complex k (e.g., in 3D because of
the complex nature of associated Legendre functions). However, the relations (B.1) remain
the same as in the case of harmonics of a real argument [4, 65]. For 3D case see, for
instance, appendix 1 of [4] or appendix A of review by Tong [65]. The 2D case follows by a
straightforward adaptation of the 3D case, whereas the 1D case is trivial [49].

Appendix C. Free-space scattering Green’s function

One has (see equation (5))

G+
0(σ, r, r′) = 1

(2π)d

∫
eik·(r−r′)

σ 2 − k2 + iε
ddk = −iCH+

0(σ |r − r′|), (C.1)

where

C = π

2

A

(2π)d
σ d−2 =




1
2σ

, 1D,

1
4 , 2D,

σ
4π

, 3D,

(C.2)

is a real positive number for positive energies. The second equality in (5) is established
by expanding the exponential into regular waves according to equation (B.7), performing
the angular integral using the identity (B.6) satisfied by the harmonics YL, and eventually
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performing the remaining radial integral using the integral identity

I =
∫ ∞

0

J0(kr)

σ 2 + iε − k2
kd−1dk = −π i

2
σd−2H+

0(σ r), (C.3)

which can be easily established by contour integration in complex plane. On arriving at
equation (C.3), one substitutes for J0 according to

Jl (kr) = 1
2

[
H+

l (kr) + H−
l (kr)

]
(C.4)

and applies the identity (analyticity property)

H−
l (z e−π i) = (−1)l+d+1H+

l (z) (C.5)

(see equations (9.1.16) and (10.1.18) of [16] and [49]) for l = 0.
One can show that

|x − y| ∼ |x| − x · y
|x| + O(1/|x|2) as |x| → ∞. (C.6)

Therefore, upon using the asymptotic properties (2) of H+
0(σ |x − y|) for |x| → ∞,

G+
0(x, y) ∼ fσ (|x|) e−iσx·y/|x| = fσ (|x|) e−ik′ ·y, (C.7)

where

fσ (|x|) ∼ G+
0(x, 0)|x→∞ = −iCH+

0(σ |x|), k′ = σx/|x|. (C.8)

Function fσ (|x|) describes outgoing waves in a given dimension. Explicitly,

fσ (|x|) =




− i
2σ

eiσ |x|, 1D,

− i√
8πσ

eiσ |x|−iπ/4√|x| , 2D,

− 1
4π

eiσ |x|
|x| , 3D.

(C.9)

The product AC in the partial wave expansion (9) of the free Green’s function can be
independently determined from the condition that the discontinuity of radial derivatives of the
free Green’s function at coinciding arguments multiplied by rd−1 is exactly 1. The factor rd−1

follows from a fact that the integral measure dr can be written as dr = rd−1 dr d�. Since
the harmonics YL are orthonormal in the measure d� (equation (B.3)), the discontinuity of
radial derivatives of the free Green’s function in the absence of any prefactor in (9) can be
conveniently expressed by the Wronskian

Wr [Jl(σ r),H+
l (σ r)] = iWr [Jl(σ r),Nl(σ r)] (C.10)

where

Wx[f (ax), g(ax)] = f (ax)g′(ax) − f ′(ax)g(ax),

and prime denotes first derivative with respect to x. Now

Wr [Jl(σ r),Nl (σ r)] = σWz[Jl(z),Nl (z)]

where z = σr .
Knowing the Wronskian

Wz[Jl (z),Nl(z)] = JlN ′
l − J ′

l Nl =



1, 1D,

2/(πz), 2D,

1/z2, 3D,

(C.11)

the product AC can be then found directly from the discontinuity given by the relation

AC = {σrd−1Wz[Jl (z),Nl(z)]}−1. (C.12)
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Appendix D. Jacobi identities

The equivalence of the lattice sum (see equation (3)) and the eigenvalue expansion (see
equation (13)) in the case of the heat equation with the Bloch boundary conditions in a box
leads to the identity

K�(R, t) = 1

(4πt)d/2

∑
rs∈�

eik·rs e−(R−rs )
2/(4t) = 1

v0

∑
kn∈�∗

e−(k+kn)
2t ei(k+kn)·R. (D.1)

In a special case, for a simple cubic lattice with a unit lattice constant one has � = �∗. Upon
substituting kn = 2πn, with n being an integer valued vector, and R = k = 0, identity (D.1)
yields

1

(4πt)d/2

∑
n∈�

e−n2/(4t) =
∑
n∈�

e−4π2n2t . (D.2)

For d = 1, the latter is a special θ = 0 case of the famous number theoretical Jacobi theta
function identity (upon rescaling t → 4πt),

∞∑
n=−∞

exp(−πn2t − 2π inθ) = t−1/2
∞∑

l=−∞
exp[−π(l + θ)2/t], (D.3)

which is valid for a complex θ and Re t > 0. The Jacobi theta function identity can also be
proved by applying the Poisson sum rule and is also sometimes referred to as Poisson–Jacobi
formula.

An alternative form (35) of the Jacobi formula, as has been used by Kambe [4, 20, 21],
is obtained upon substitution t = ζ/2 and is valid for Re ζ > 0. After the substitution
t = 1/(4ξ 2), the generalized Jacobi identity (D.1) yields∑

rs∈�

e−(R−rs )
2ξ 2+ik·rs = πd/2

v0ξd

∑
kn∈�∗

e−(kn+k)2/(4ξ 2)+i(k+kn)·R. (D.4)

In like manner, upon the substitution R → −R, k → −k, kn → −kn, one finds∑
rs∈�

e−(R+rs )
2ξ 2−ik·(R+rs ) = πd/2

v0ξd

∑
kn∈�∗

e−(kn+k)2/(4ξ 2)+ikn·R. (D.5)

The last two identities are often referred to as the Ewald identities (cf [2, 18, 19]).

Appendix E. General properties of free-space quasi-periodic Green’s functions and
of lattice sums

For any rs ∈ �, kn ∈ �∗,G0� satisfies the following trivial properties:

G0�(σ, k‖, R) = G0�(σ, k‖, R + rs) = G0�(σ, k‖ + kn, R). (E.1)

Obviously, G0� is only a function of the projection k‖ of k upon �∗ (note that k‖ = k for
d� = d).

Except for the frequencies which satisfy σ 2 = (k‖ + kn)
2 for some kn ∈ �∗,G0� satisfies

the following reflection symmetry property [20, 21]:

G0�(σ, k‖, R‖ + R⊥) = G0�(σ, k‖, R‖ − R⊥). (E.2)

From dual representations (21), (23) it follows that the respective G0� are Hermitian for the
interchange of variables r‖ and r′

‖ and complex symmetric for the interchange of variables r⊥
and r ′

⊥.
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Obviously, for any rn ∈ � also −rn ∈ �. Upon combining the inversion formula (B.2)
of angular-momentum harmonics YL with the defining equation (11) for DL one finds

DL(σ, k‖) = −iCA1/2δL0 − iAC
∑
rn∈�̄

′H+
l (σ rn)Y∗

L(r̂n)

{
2 cos(k‖ · rn), l even
2i sin(k‖ · rn), l odd.

(E.3)

The summation here is performed over the subset �̄ ⊂ � of equivalence classes of rn ∈ �

with respect to spatial inversion rn → −rn. Thus, for l even the corresponding lattice sums
DL(σ, k‖) are even functions of the Bloch vector k‖,

DL(σ, k‖) = DL(σ,−k‖). (E.4)

In the special case of a 2D periodicity in 3D one has additionally

DL(σ, k‖) = DL

(
σ, k±

‖
) = DL

(
σ, k∓

‖
)
, (E.5)

where the respective wave vectors k±
‖ = (k1,−k2), k∓

‖ = (−k1, k2) are formed from the Bloch
vector k‖ components k1 and k2.

In the special case of D00(σ, k‖) for σ = i
√−z, there are known some further general

analytic properties in the complex z-plane, which have been established by Karpeshina
[13, 47]:

• D00(i
√−z, k‖) is for a fixed Bloch vector k‖ an analytic function on the complex plane

cut along the real half-axis z > |k‖|2 with Im D00 �= 0 on both sides of the cut.
• On the real half-axis z < |k‖|2, the function D00(i

√−z, k‖) is real, smooth and increases
monotonically (0 < ∂zD00(i

√−z, k‖) < ∞) from −∞ to ∞.

Appendix F. Alternative definitions of lattice sums and structure constants

If instead of D� of equation (7) the difference

D�(σ, k‖, R) = G0�(σ, k, R) − G0(σ, R), (F.1)

which is also regular for R → 0, is expanded in terms of the regular waves,

D�(σ, k‖, R) =
∑
L

DL(σ, k‖)Jl(σR)YL(R̂) (F.2)

=
∑
L,L′

gLL′(σ, k‖)Jl (σ r)Jl′(σ r ′)YL(r̂)Y∗
L′(r̂′), (F.3)

this results in alternative lattice sums DL and structure constants gLL′ . We recall here that the
structure constants can in a known way be unambiguously determined from the lattice sums
[53].

The lattice sums DL and DL and structure constants ALL′ and gLL′ , where

D�(σ, k‖, R) =
∑
L,L′

ALL′(σ, k‖)Jl (σ r)Jl′(σ r ′)YL(r̂)Y∗
L′(r̂′), (F.4)

are related to each other as follows:

DL(σ, k‖) = DL(σ, k‖) + iCA1/2δL0, (F.5)

gLL′(σ, k‖) = ALL′(σ, k‖) + iACδLL′ . (F.6)
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A and C here are the familiar numerical constants which have been defined by equations (B.8)
and (C.2), respectively. Relations (F.5) and (F.6) follow easily from

i Im G+
0(σ, R) = −iCJ0(σR) = −iCA1/2J0(σR)Y0(R̂)

=
∑
LL′

g0
LL′Jl (σ r)Jl′(σ r ′)YL(r̂)Y∗

L′(r̂′), (F.7)

where

g0
LL′ = −iACδLL′ . (F.8)

In going from the first to the second equality in (F.7) we have used that in any space dimension
Y0(R̂) = A−1/2 (equation (B.5)). The final expressions then readily follow from the partial
wave expansion of the free Green’s function (see equation (9) of appendix C).
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